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Authors of [1 and 2] have shown that in the investigation of the stability of processes
with distributed parameters, Liapunov functions should be replaced with functionals, A
method of constructing these functionals is, however, not given. In the present paper
we show, that the functionals analogous to Liapunov functions can be constiucted for the
investigation of the stability of solution of a system of linear integro-differential equa-
tions and, that they appear as integral quadratic forms, The problem of constructing
these functionals is thus reduced to solving a boundary value problem,

For nonlinear systems of integro-differential equations, stability theorems in the first
approximation are proved,

An analogous problem for a system of partial differential equations and plane fluid
flow, is solved in [3 and 4] R

1, Let us consider the process described by the following system of partial integro-
differential equations

= Li(9) + Q Z bip(z, 2) 9p (2, t) dr, (i=1,2,...n) (1.1

Tz p=1

{ Koo ) 2dt = L@+ § 3 b @ D00 (b )

T2 T, Pp=1
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L@=3 [as@a@n+ 3 aup(x)——~+ S e (@) Tt il ] ()

i=1 p=1 p,»,x::l

2= (21, 29,000 m)y 2= (21, Z21eerZm)y, @ = (P1y GreenrPr) (1.3)

Here % isthe time, @ is the vector function describing state of the process and
X1, X3 seess Ly are the coordinates in the region T within which the process is taking
piace, When the integration with respect to & is performed, then the region T is
denoted by T, ,

The coefficients a;; = ai; (2), ai® = ai;® (z), &l = ol (z) are continuous
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and twice differentiable with respect to the coordinates Xi, Xz sese» Xz « The ker-
nels Ay =K {(x, £) and bip =bip(x, Z) are regularand Ay =Ay(x, Z) are
assumed to be symmetrical and closed,

We also assume that the system (1, 1) contains derivatives with respect to X of up to
the second order inclusive, The methods of construction are applicable to other cases,
The functions @ 3(X, ), (£ =1, 2,..., 71 ) satisfy the homogeneous boundary

conditions , e. 2

Z[Au (z)9;(z, t) + Au”( ) M] = {) (z=5) (1.4)

i=1 =
where S is the surface bounding the region T,

Some of the coefficients 441_, and A“p may be equal to zero and this depends on
the problem, e, g, when A “p =0 , then the boundary conditions reduce to (©y)5=0
/=L, 1),

We assume that for the given initial ¢y =®(JXx, ¥ = %, ) and boundary conditions
(1,4), the system (1, 1) has a unique solution for £= £y , When the process is unper-
turbed , we have ¢ = 0, ¢ > 1,, z & 7. Initial conditions differ for perturbed and
unpertirbed motion, In the present case the initial conditions are kept unperturbed,

We should note that, when we speak of perturbing the initial conditions, we understand
that the perturbations act continuously, Such a case is dealt with in the investigation
of the stability of plane fluid flow in [4]

We shall introduce p- = O [tp] representing some positive functional, as the measure
of stability, It will characterize the behavior of the system in the mean over the region
T at any instant of time £ 2 ¢4 . In a number of cases, additional constraints imposed
on the initial conditions by means of another measuwre Py = Pp [ ], are found advan-
tageous, At the same time we assume that O < CPg ,» where ¢ is a positive constant,

The process ¢ = 0 is called stable in both , P and pg , if, for any positive €
such 6 = 8(€) > 0 canbe found that p S€, (£ 2¢4) when Po <6(e), (E=12o)

A nonperturbed process ¢ = 0 is called asymptotically stable in both measures if it
is stable in 0 and Py andif P~ 0 as £— >,

When the stability in one measure is considered, we assume that &y =P,

2 . Functionals representing the analogues of Liapunov funcrions, satisfy the following

functional equation dvjdt = u (2.1)

Here the derivative with respect to ¢ is calculated according to (1, 1) with (1, 4)
taken into account, while ¥ and U are functionals,
We shall first construct the solution of (2,1), as a linear integral form

P = S {Z fi (r) @iz, t) + Z fi{z) S Ki(z, z) g; (2, t)dtz}dt,, (2.2)

Tx =41
Its derivative with respect to T will be
d . 99, ( + 1)
CHERED POk LN f:(x)gm(:r, g du |

Tx di= i=n41
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Utilizing (1. 1) and integrating by parts, we obtain

“f‘f‘f“ = 5 2 P (7, ’) Lo® (Jis fare o fn \y bij (z. 7) fi (2) dx,;  ¢{er -

Tx jesl Triey
+ ) Qds, (2.3)
n m (I" f m (’}35']5, pa (r} f
Laf* (Fos foveent)= 3} (@i (1) 1 — ) — NG
i 1 : A ] ) i = Tn P,‘q_i:l é‘xp d.}cq ]
n _ m m aalpq/i
Q= { 2 [Z @ (@iPfi— ) —a];m) cos (n, x2p) +
1, j=1 " p= “‘J. =1 q
! L 2.4
%ﬂ a;,m /,C()R(IZ :l",l)]ch (2.4)

where S is the surface S when the variable of integration is denoted by X,
Some of the terms in § will, by virtue of the boundary conditions (1, 4), be equal
to zero, Let us choose, for the functions /' (Xx), such boundary conditions that =0,

Let '
U = S D wi () s (, £) dg (2.5)
T j=1
Insertion of (2, 3) and (2, 5) into (2, 1), yields
Lei* (frs faseeenfn) + SZ bij (2, 2) f1 (2) dv; = u;(x)  (j=1,2.....n) (2.6)
Tz i=]

which represents the system of equations defining the functions Jj = Ji(Jx) with
ui t?Ji(')(:) (i =1, 2, vea, 72«) giVEﬂs
Now, Equation (2, 1) will satisfy the integral quadratic form

v = S S 2 fis (2, E) i (z, 8) $; (5, ) drr drs 2.7)
Tx TE 4, f=1
where
Vi=@i (i=1,2,..,m) Py = S Ki(x,2) @i (z,t)dv, (i=ny+1,,..,n)

Let us find dV/d ¢ in accordance with (1, 1)

S fij (z,g)[ 3 5+ P; 5 ]dndr, =

TE 1,0=1
SE 2 L*ij [fll (xw §)1---7fnn (xs E)] Pi (.Z'., t) (Pj (gv t) de dti _|"
TE i,j=1

n

Vi (z, ) S Qi dSzdv, + S 2 ¥ (8. 0) S Q" dSzdv:  (2.8)

1 SE TEj=1

-}
s

M:

-+
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where (2.9)
L¥i51f11 (2, E)sevnsfun (2, E)] = 155 fn(if E)evenfu (2, E)] (i,7=1,..m)
b Ll D e fa@ D) DU e D8+ I G B e
L4 a0 Bt 0 V] = Lot Loy (5 B 0 )] - vy B

+§z izllfmiz,g)bm(z,x)dn (i=n;+1,..n j=1,2..n)
L% [fu (, E)vev s frn (2 EI;] = L*¢;[fir (2,8),- s fin (2, E)] + Bij (2, &) +

+“Sc i{fﬁp(ﬁrl)b(cvg)dh (=120 f=ny41,...n)
L*3i [f11 (@ E)senesfom (25 Ez;] = Aij(2,§) + By (2, §) G i=m-+1,...n)

Ay (2, 8) =TS K;i(z, 2) {sz *1a (20 8)aeenrfin (2, 8)] + S 2 ftp(zsﬁ)bm(@vﬁ)dfc}d%

7Y p=1

Bx; (JC a) TS (é! g) {L*xi Efi:i (-7:7 C)v-’-yjnj (x: g)} +
S >} f2i (2,0 bpi (2 x)drz}drz;
Tz p=1
2 : (€, 1) 2 Z [ax;? (B) fix — 2 W] cos (n, Ep) +
pmi k~1 g=1
+ E 5w @) 55—’mcos (. &)
k=1 pq=l
i (x, 7) 2 agP (x)fk; — E Oy (2) i) cos (n, Tp) +
6:«:g
i=1 p=1Fk=1 g=1
+ Z 2 akim“—f’-JGOS (nyzq)
Ihi=1p.g=1

Lei® U1 (@, B)sevesfmy (2, 8)] =

n o Ofrim® (1) o 0abX2) ]
= []ckjaki(z)_ 2 *ﬂ;?m“"f" + 2 gz‘ 9z, kj:[

k=1 p=1 P D=1

Lﬁm [fat (I E): ;fm (Ia g)] =
o BB (B | - Pape(E)
= Z | firai; §) — 2 —f%—g—(*+ 2 ‘—%g;;a'g'q“i]

k=1 =1 r a=1
We shall introduce, for the functions fi; =/14(x, § ), such boundary conditions
that the surface integrals in (2, 8) become zero, i.e.
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(Q:Y)s, =0, (Qi")s, =0 (2.10)
For example, if (§;)s,=0,then
(fn)sx == (fu)*' =0
If some integral quadratic form U (2,7) is given, then its derivative will, by virtue
of (1,1), be represented in the form (2, 8), With the boundary conditions of the func-
tions f”(x , €) satisfying the relations (2, 10), the derivative ¢ 0/d ¢ will again
be an integral quadratic form in @, (x, %),

Let the functional W be given as an integral quadratic form
n

U= S 5 2 w2, B) @i, 1) @5 (6 8) drodrs (2.11)
Tx T, j=1
Equation (2, 1) is satisfied, when
Lij 11 (@ B)seeoofon (2, B)] = w3 (2, B) (hi=12,m) (2.12)
are fulfilled, In order to construct the integral quadratic form ¥ (2,7) with ©(2,11)
given, we must solve the system (2, 12) for fi; = Ji4(x, §) with boundary conditions
following from (2,10), In this case, the problem of constructing the functional satisfy-
ing (2. 1), reduces to the solution of a boundary value problem,
Equation (2, 1) can be satisfied by integral forms of higher orders, but the correspond-
ing equations shall not be quoted here,
Note, In some cases, Equation (2, 1) can be satisfied by a form, linear or quadra~

tic in Ay /3xq , e.g by the linear form

v;:S {2 Z 1P{z) __‘—}- E Z f"(x) SKi(z:,z)ngfdtz}drx
?

T i=1p=1 =l p=1

or by the form, which is a linear combination of ¥ given by (2.2) and ¥, [3]

Let W (2,11) be a form, positive definite in 0, We shall denote the class of func-
tions  {u;; (z, E)}, £ € tx and §E& g, satisfying this condition, by A, If the
system (2, 12) has a solution with given %4,(Xx, €) belonging to the class [fp , thena
form U which satisfies (2, 1) with 4 given, always exists,

In the following we shall assume, when considering the sign definite form 4, that
(2, 12) has the solution f” {x, €) and, that the corresponding form U is continuous
over O,

Below we shall use two theorems, which represent the modifications of theorems first
proved in {1 and 273,

Theorem 2,1, If afunctional D = U[tp] continuous and sign definite over 0
exists for (1,1) and if its derivative with respect to time is, by virtue of (1, 1), also sign
definite, but of the sign opposite to that of U = U[tp], then the process = 0 is
asymptotically stable in £ .

Theorem 2,2, Ifa functional U = V[¢p] continuous over the measure P exists
for (1,1) and if its derivative with respect to time is, by virtue of (1, 1), sign definite
while the functional itself is not of constant sign opposite to that of U = WU[P], then
the solution ¢ = 0 is unstable in P,



The stability of proccsses with distributed parameters 41

When the stability of processes with distributed parameters is investigated, then, by
the Theorems 2, 1 and 2,2, the sign definiteness and continuity of the functionals U or
U (analogues of Liapunov functions) must be checked, For one particular case, the cri-
terion of sign definiteness is given in the Appendix, If the function f,d(x, €) with an
integrable square is the solution of (2, 12), then the form U (2, 7) will be continuous

n
over the measure R
0= Z (pi' dl‘x
.

T, i=sl
which is easily confirmed by applying thz Cauchy-Buniakowski inequality,

The measure of stability P is found a priori from the physical considerations, In
isolated cases, adoption of the functional U (2,7) as the measure 0 is of interest, We
find that in this case the check on the sign definiteness and continuity ceases to be neces-
sary and the magnitude U > 0 characterizes the behavior of the process in the mean

over the region T , with respect to time ,

3 , Let us consider a nonlinear system of integro-~differential equations

99, " .
- = Li(e) + S 2 bip(e, 2) @, (2, 1) dt, + @y (=120, m)
wzpzl

n
{ K@ ar, =L@+ § D bz 20, (@ 0dn + D,
T, T, p=1
(i=n+1,...,n) (3.1)

Here & =®,(x, ¢, ®,...) are functions nonlinear in & SP(P1, P2reees Pn)
and in its derivatives with respect to coordinates Xy , X2,..., Xy , and first terms of
their expansions are of the order higher than the first, We shall call the system (1, 1),
the first approximation equations,

Theorem 3.1 , Solution ¢ = 0 of the nonlinear system (3, 1) is stable in P,
if it as asymptotically stable in the first approximation, if the functional U (2,7) is
continuous in 0 and if the condition

A
-+ Au< 0, ftor -—Z—

<Le<1 (3.2)
is fulfilled, o

Here . (3.3)

A= 0 S @ D10@ ;@ 4 @) + Qulan ) 955, D AT
%% 4, j=1
and 4 is a negative definite form defined by (2,11),

Proof , Consider the integral quadratic form U satisfying the equation U* = U,
where the right-hand side is a negative definite integral form (2, 11) and the derivative
D * is computed according to the linear system of the first approximation (1,1) , By
definition of the theorem, ¥ is continuous in P and the solution @ = 0 of (1,1) is
asymptotically stable, Moreover, three following variants are possible : form 2 may
assume negative values, form U may be permanently positive or, it may be positive
definite, The functional ¥ cannot assume negative values, since in that case Theorem
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2. 2 would be valid and the process would be unstable, Assume that ¥ 2 0 when 0 #0,
Let us consider the process with initial state p #0 , for which =0, But v*° <0,
Hence, in the course of the process we should obtain 2 < 0 which is impossible, Since
by definition U is nonnegative, it can only be positive definite,

Let us now construct the derivative of this form with respect to time and according to
the nonlinear equations (3, 1) ; the result willbe U* = U +AW =0, Form U is con-
tinuous and positive definite, while %+ Aw is nonpositive, Consequently, the solution
@ =0 of the nonlinear system (3, 1) is stable, If U + AU is negative definite, then the
process @ = 0 is asymptotically stable,

Theorem 3,2 , Solution ¢ =0 of the nonlinear system (3, 1) will be unstable
in p, if it is unstable in the first approximation, if the functional ¥ (2, 7) is continuous
in p andif ¥ + AU (where AW is given by (3, 3)) is a sign definite functional of the
same sign as (2,11) ,

Proof ., Letthe form U (2,7) satisfy Equation U * =1, where U is a positive
definite form of the type of (2,11) and v is calculated according to the linear system
of the first approximation (1, 1), Moreover, the form U cannot be negative definite,
since in that case the process @ = 0 would, according to Theorem 3,1, become asymp-
totically stable, which contradicts the condition of the Theorem, It also cannot be
permanently negative, since that would give ¥ = 0 for some P 0. Assumption that
U* >0 implies that U >0 and that contradicts the initial assumption that ¥ S0,
Thus, the integral form U will not be of constant sign opposite to that of U,

Let us now compute the derivative D°* according to the complete systemn (3, 1) and
represent it in the form U "=U+AU. Here U+AD isa sign definite, e, g, a positive
definite functional, while U is continuous and is not of constant, ana opposite to that of
U+ AW, sign. Consequently, the solution ¢ =0 of (3, 1) will be unstable,

4, Examples , (1), Letus consider a process defined by

! o
L L ®) (.0)
i

Here Yy = Y;(x) 0is a complete, orthonormalized systelm of functions in the interval

[0, £], We shall represent the solution of (4,1), as

0
p= 2 o (D (@)
i=1
and we shall investigate the stability over the measure
l oo
p=0v= S 9 (@, By dz = D) a2 () (4.2)
0 i=1

Let us find the derivative of U in accordance with (4, 1)
[ 31

o0
d 5 A - s
=2 W’(“" B)@ (e, @5 Hdidr=2 > bap?

[V}

If b, S0, then the process ¢ = 0 is stable , 1If, on the other hand, by <0 and
lim bi <0 as L=, then D* is negative definite (see Appendix), Moreover, the
process @ = 0 becomes asymptotically stable,

=
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2) « Consider a nonlinear equation describing the vibrations of a string in a resisting

medium %::f) —a %xg 0@ - (x, t,Q, %‘i}) , QL) =@, t)=0 (4.3)
where @ = (X, ) is the deflecnon of the string from its equilibrium position =0,
Introducing the notation oQ
Pr= > Pr=Q
we obtain (4, 3) in reduced form
adq%—a (;;p’--bcpl 4@ (x, t, Qs Pr), 6;;“—-% (&9

Let us consider the Stablllty over the measure

S (R i CC

and the integral form

“ :SS[““ (@,E) @1 (@, 1) Pr (Ent) + tion(s, E) 6%6(;', 1} 5‘%6(5, t)] d dE (4.6)
00
With @, (0, 1) = @, {m, {) = 0, we obtain

n
S
1]

where Uy and u22 are given by

oma

w8 @ e 60+ D288 g0 00, 0]

U = 2 u,, sin sz sin rE, up= 3| u c08szCoSTE (4T
£, =1 s, r=1

We shall consider the integral form U represented by

=SS{111% (@, 2) @1 (E, 1) + [1201 (=, t)a‘Pz(é’ t)+

090
09> (w t) de (r 1)99: (B, t)
Lot + il =gy M)+ fag = }da: dE (4.8)
312 Bfs
Fa=fu, Fyg = — jé ; Fg=— _53%1 ’ 2= gif;za (49)

The function ¢@g(Xx, £) becomes zero at the ends of the interval [0, T}, hence
the boundary conditions f ; are arbitrary ,
Putting (0, £)=@a( 17, £) = 0, we obtain
TR

= { 1P (2 001 (G 1)+ Frur (29 02 (5 1) +

+ le‘Pz (IL', t) Q1 (E,u t) + FZ‘.lq)Z (xr t) P2 (g! t)} dx dg
Integral form U exists if the system (2, 12) which, in this case, can be written as
aan

Fyy + Fig+ 2bF 1 = upy, bF1 + Foo -+ —355— ez =0
6Fn 82}7]) aFm — 6%‘23
bFn 4 Faon -+ 3 =0, B2 T g

has a solution,
By (2. 10), we have the following boundary conditions :
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Fll (xv E) Ix:g| 0= ‘Fl'_’ (‘rn E) lx:—““, 0 - F:l (l‘, E.) =%, 0 =0 (41“)
Lasm, 0
This system can be represented as

&Fy | #Fy . . . 92F 1)
0&‘-‘] togaE b P W = — by, Fa=— g (Fak ) Gl

04F11 1’ 22 8 rnq 821t21 1 (”2[‘11
e ot e b = — o | Fan - 512
oatazz+ P e Y R £ <F~-+ a.u-‘) (4.12)

and we shall seek the solution of the above equations in the form
[es)
Fu= Y, Agsinszsinrg, Fy= Y B sinsysinrg (4.13)
], 1==1 s, r=1

Let us insert (4, 13) into (4, 11) and (4,12) , Taking (4. 7) into account, we obtain the
following system of algebraic equations for 4. and A,
— (st - 2°) A, 2B, = —bug,’
2s2r24,, — (2 + ) Bg, = —bsrug,”

which yield
— b (st r)u, — 2bsru
¢ hstrt— (st 4 r7) (55 4 ré 4 26%)
b (52 4 72 4 26%) [b (s2 + r2) | - 26 u "]
B —=—u_'— : 2 (o2 2y (52 2L 22 (4.14)
o o5 U, 2 [4s?r2 — (5% 4~ r?) (5% -} r2 4 202)]

(s,r =1,2,..))
Expression (4, 13) defines the functions /3; and F55, while (4,11) and (4,12)
define F12 and Fal co

Fro=— % S (B, — A, )sinswsinrt
s, r=1
[ee]
Fpm — 2 2 (B, — s?A,) sinszsinrg
8, r=¢1

Having determined F'1y , F12, 21 and F g we can, by means of (4, 8) and (4. 9),
determine the functional U, Let

Ugy = Uy, gy = uy" 8.
Then A4y =Bgp =0 when S# 7, and
L . i . .
A ——b(ts—}—us )y BSS:E[Zu —{—(sz-i—b?)us]
Let us determine
oo o0 B
fu= Z Ass sinsrsinsg, fip=— _2_ Z (_.5.5. — sAss) sin sz cos s§
s=1 s=1 §
(o] (e o]
B B
131:_% Z (_”—SA“> cossrsin sk,  fa = E —3% cos sz €08 5§
s $
s=1 g==1
next, This is equivalent to
1 0 - 1 R u L4
fi= =5 Z (u, +u,")sinszsinst, fn.= — 55 2 —:— sin sz cos s&
s=1 s=

1 u "
fao=— Z % cosszsinsE, fa=
20 s

s=1 s=1

[u + (1—}— _) ua”]cossx cos sk
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We shall represent the solution of equation of vibration of a string by

(e8] [ee]
1 = E agsin sz, P. = 2 3, sin s» (4.15)
EES s=1
In case of linearized equations we have
A = a, cos st -+ b, sin st Be = —sa, sin st -+ sbg cos st
where @, and D, are constant coefficients, Then
[ge]
P D) (a8 (4.16)
Y
The process ¢ =0 is stable in the first approximation over p and the functional
T e}
v = _213_ 2 1(u> -, ysin se sin rE@ (x, 1) @1 (B, 1) —
U0 s=1
' (3.1 %" 99: (2, 1)
— ~:— sin sx cos sEQy (2, ) T T s cos s sin s§ vt g1 (8, )+
b? 0Q: (2, )02 (E, t
-+ {ug’ -+ ( - ) 3”1, €08 5T COS S P: é){x’ ) q}a{é }}da: dg,
or o
T2\ . wy a2 - ol b® 3
v By {(us + Uy )ash - ‘?'us asgs -+ & l_”& + (1 + ?f) usﬂ‘] Baqjk
s=1

If the coefficients 144 and u " are bounded, then the form U is bounded and con-
tinuous over P, Indeed, we have the followmg estimate :

1 [ f_‘ 2 - $28.2)
f !<z;b§ma‘! \37 U, E-Jx faB, 1+ B2 <

<C0nst{z (224882 + ( Z ot Z {3’}) } (AT

§ ==l s=1 Pl

Taking into account )
Z a2 2] B,2 ) (E (2,2 = s’—’Bs”)) <t £4.18)

\5~1 (=S s==1
we obtain
Jo | < const p

Let us now consider the negative definite form 4, When /6 >0 and u,"/0 >0
we have the inequality
v g == gig“ D) e — 2 B b s () 4w B (4.19)
Consequently, the Sylvesglr criterion
—u /b [s”(us’—{—us”)]/b b b
is fulfilled for all 8 =1, 2, ,,, , and U4 can be expressed as a series with positive
terms, If also P> € >0, then a number 8(€) > 0 exists such, that ¥ 2 V4 > §(€)
(see Appendix), Consequently, the form U is positive definite, Now consider
u (2, 8) = —8(x — &), up(z, B)= =08 (z=f), 1.e, u' =1u''= —1
Let b <0 and let ¥ be a bounded, continuous and positive definite form over D and
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U=— SE j:cpl‘l - (%‘%)? de—=—p

0
If the nonlinearity @ is such that | Au|/[u| <& <1, where

Au:SS{fll [P, )P, L, .. )Pt )P (g D] -
0

0
[ 1 P, (¥,
+ f (o, t, - .)9%5—(;")+ fa ~‘P—}£;—Q¢(a, (.. .)}dw i

then the process @ =0 will be stable on 0 with nonlinear terms taken into considera-
tion, For example, we have the estimate

A< max {|/ul, | ful |ful, l/-zzl}{gupw:-—

V)
. %

T kLS

%?idx}gl(ﬁ]dr(constp‘hz S](f)ld:v

0 0

If AP, 2
[ | << 42+ Ay ('5;)

where Ay and A 5 are constants, then | Auj/|u]|< const p'”. With p sufficiently
small, the functional W+ AW will be sign definite and of the sign opposite to that of
U, Consequently, the process @ = 0 will be asymptotically stable with nonlinear terms
of (4, 3) taken into account,

6., Appendi{x , Letthe measure

7
Po = S 2 Q;" dv, t =1 (5.1)

T 1=1

be given and functions ¢y be represented by the series

= 3 o 09, (@), o= ® ::Scpi(x, DY @dt, zET, 1>l (5.2
k=1

Here ¥ = ¥, () is a complete normalized orthogonal system of functions in the
region T, Consider the form W given by

o0 n 3
w= 3 > () (5.3)
k=1 i=1
For the measure Py we have o n
Po = 2 (o) ? (5.4)
k=1 i=1

We shall only consider such an aggregate {cxki} for which D4 is bounded, i,e. a
series whose general term (QLy ) converges as o,

If Uk >0 and limu ¥ =0 as A—=, then the form U will be positive definite
over Do . Indeed, let €>0 and Py 2 € >0 be given,

The series (5, 4) is convergent, hence we can say that the final term of (5, 4) will be
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smaller than any positive number €5, €.8 &= &€, provided that ¥ is sufficiently
1

large N—1 n
> e =po— 3‘ Z(ak >e—t=—¢
k=t i==1 k—N i=1

o n . N—1 n
DRIV I i R P
k=1 i=1 ko=l i=1
N—1 &
> min (u; ) ~~_x(‘j(ﬂ)>0

> min (u; )Z E(ak

h=1i=1

where / is dependenton €, Thus W is positive definite over P, For any positive
number € there exists a number & = §(€) > 0 such, that ¥ 2 §(€) when py>€

We should also note that the form

n
SR ah ak
14, g=1

||
TMS

7

is positive definite over Pn, if ¥
= 2 u, aak ak
i, j=1
is positive definite for any fixed 4 21 and when k—® _ or, when Ugy 0 as koo
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